Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Cloud Comput (Heidelb) ; 12(1): 10, 2023.
Article in English | MEDLINE | ID: covidwho-2196451

ABSTRACT

Supporting security and data privacy in cloud workflows has attracted significant research attention. For example, private patients' data managed by a workflow deployed on the cloud need to be protected, and communication of such data across multiple stakeholders should also be secured. In general, security threats in cloud environments have been studied extensively. Such threats include data breaches, data loss, denial of service, service rejection, and malicious insiders generated from issues such as multi-tenancy, loss of control over data and trust. Supporting the security of a cloud workflow deployed and executed over a dynamic environment, across different platforms, involving different stakeholders, and dynamic data is a difficult task and is the sole responsibility of cloud providers. Therefore, in this paper, we propose an architecture and a formal model for security enforcement in cloud workflow orchestration. The proposed architecture emphasizes monitoring cloud resources, workflow tasks, and the data to detect and predict anomalies in cloud workflow orchestration using a multi-modal approach that combines deep learning, one class classification, and clustering. It also features an adaptation scheme to cope with anomalies and mitigate their effect on the workflow cloud performance. Our prediction model captures unsupervised static and dynamic features as well as reduces the data dimensionality, which leads to better characterization of various cloud workflow tasks, and thus provides better prediction of potential attacks. We conduct a set of experiments to evaluate the proposed anomaly detection, prediction, and adaptation schemes using a real COVID-19 dataset of patient health records. The results of the training and prediction experiments show high anomaly prediction accuracy in terms of precision, recall, and F1 scores. Other experimental results maintained a high execution performance of the cloud workflow after applying adaptation strategy to respond to some detected anomalies. The experiments demonstrate how the proposed architecture prevents unnecessary wastage of resources due to anomaly detection and prediction.

2.
IEEE Access ; 9: 74044-74067, 2021.
Article in English | MEDLINE | ID: covidwho-1327467

ABSTRACT

Cardio Vascular Diseases (CVD) is the leading cause of death globally and is increasing at an alarming rate, according to the American Heart Association's Heart Attack and Stroke Statistics-2021. This increase has been further exacerbated because of the current coronavirus (COVID-19) pandemic, thereby increasing the pressure on existing healthcare resources. Smart and Connected Health (SCH) is a viable solution for the prevalent healthcare challenges. It can reshape the course of healthcare to be more strategic, preventive, and custom-designed, making it more effective with value-added services. This research endeavors to classify state-of-the-art SCH technologies via a thorough literature review and analysis to comprehensively define SCH features and identify the enabling technology-related challenges in SCH adoption. We also propose an architectural model that captures the technological aspect of the SCH solution, its environment, and its primary involved stakeholders. It serves as a reference model for SCH acceptance and implementation. We reflected the COVID-19 case study illustrating how some countries have tackled the pandemic differently in terms of leveraging the power of different SCH technologies, such as big data, cloud computing, Internet of Things, artificial intelligence, robotics, blockchain, and mobile applications. In combating the pandemic, SCH has been used efficiently at different stages such as disease diagnosis, virus detection, individual monitoring, tracking, controlling, and resource allocation. Furthermore, this review highlights the challenges to SCH acceptance, as well as the potential research directions for better patient-centric healthcare.

SELECTION OF CITATIONS
SEARCH DETAIL